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1. INTRODUCTION

In this paper we consider interpolation based on the Laguerre roots and
the point °as nodes, First we show that this interpolation generates a con­
vergent approximation process on [0, 00) for a wide class of functions.
Moreover, we prove the following interesting fact: In order to have uniform
convergence of the derivatives of the interpolating polynomials in every
interval [0, A], it is sufficient to prescribe the derivatives at °only, in
addition to the function values at the above-mentioned nodes.

Interpolating polynomials of degree 2n - 1 based on the roots of nth
Laguerre polynomials and the point °were introduced first by Egervary
and Turan [4] as the "most economical" stable interpolation on [0, 00). A
convergence theorem was proved by Balazs and Turan [1] and later this
process was investigated by 100 [7-10].

Lagrange interpolation for the Laguerre abscissas and its convergence
were treated by Freud [5] and Nevai [11-13]. Let

n= I, 2,... ,

be the Laguerre polynomial of degree n for r:x> - 1, with the usual nor­
malization

L;,~)(O) = (n: (1;)­

18
0021-9045/87 $3.00
Copyright CC-i 1987 by Academic Press, Inc.
All riQ:hts. of renrorlnc.finn in ~nv form re"erverl



INTERPOLAnON ON THE POSITIVE REAL LINE 19

These polynomials are orthogonal on [0, 00) with respect to the weight
function e-xx~. The zeros of L~~)(x) are

If there is no danger of misunderstanding we will write briefly Xkn or X b

k= 1, 2, ..., n.
In what follows we will always suppose that CI. is integer. Let f be

an a-times differentiable function on [0, 00). Let us denote by Q n,~(f; x)
its Hermite interpolating polynomial of degree n + CI. with nodes x~~/,

k = 1,2,,,,, n, and 0, the latter with multiplicity a + 1. That is,

(1.1 )

where lAx) are the fundamental polynomials of Lagrange interpolation
based on the roots of L~,~)(X):

k = 1, 2,,,,, n,

and the polynomials r;(x) = rina(x) are such that

if s = i,

if °~s < i,

and

for k = 1,2"", n; i = 1, 2, ... , 0(,

so that, explicitly,

i = 0, 1,,,.,0(.

In the case 0( =°we have Lagrange interpolation:

(1.2)

Convergence theorems and estimates concerning Qn,o(f) were announced
without proof by the author at the Varna Conference on Constructive
Theory of Functions in 1984, [2].

We remark that convergence problems of Hermite interpolation of type
Qn,~ based on the point 0 and Laguerre roots for non-integral a can be con-
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sidered also, but these investigations reqUIre other means and will be
treated in a forthcoming paper.

2. RESULTS

We give weighted estimates which imply the convergence of interpolating
polynomials Qn,,(f) and their derivatives Q~i)(f) to I and IU), respectively
in [0, (jJ).

In what follows O( 1) is always independent from x and n. Our first
theorem concerns Lagrange interpolation based on the roots of L:,o)(x) and
the origin (see (1.2)).

THEOREM 1. Let I E Lip y, ~ < y ~ 1, in [0, (jJ). Then

I/(x) - Q".o(f; x)1 = O( 1) X 1;2 e,;2n );2 + 1;4

Note the important fact x~,~/ ~ n for the greatest zero of L),'I(X), which
follows from Lemma 3. We use the symbol ~ in the sense of Szego
[14, p. 1]: if two sequences z" and w" of numbers have the property that
w" # ° and the sequence Iz"I/1 w"I has finite positive limits of indeter­
mination, we write z" ~ ww

THEOREM 2. Let P,) E Lip y, 0< y ~ 1, in [0, (jJ) lor some 'Y. > °integer.
Then

I/(x) - Q"jf; x)1 = 0(1) X
IH

1)/2 e'/2 n

for °~ x ~ x"".

(x + ;,)/2 + 1/4

If prj exists for some r >'Y., then we may have better estimates:

THEOREM 3. Let fir) E Lip y, 0< y ~ I, in [0, (jJ) for some r> 'Y., where
'Y. ~°and integer. Then

If(x) - Qn,,(f; x)1 = 0(1) Xl' + 1)/2 e'/2 n- 1r +/)/2+ 1/4

COROLLARY. The convergence of Qn,,(f) to f is uniform in every finite
subinterval of [0, (jJ) under the assumptions of the above theorems.
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THEOREM 4. Suppose that f(r) exists in [0, (0) for some r ~ a, where
'X ~°and integer. Let f(r) E Lip}', ! < }' ~ 1 it' r is even or f(r) ELip }',°< }' ~ 1 it' r is odd. Then

If(i)(x) - Q~:~(f; x)1 = 0(1) x(~ + 1)/2- i eX n -(r + Y)/2 + i + 114

for 1~ i ~ [rI2] and °~ x ~ x~~)/2.

COROLLARY. The convergence of Q~.~(f) to f(i) is uniform in every finite
subinterval of [0, (0) if 1~ i ~ [a/2].

3. LEMMAS AND PROOFS

LEMMA 1. If f(r) exists and is continuous in [0, (0), r ~ 0, then there
exists a polynomial Gn of degree n ~ 4r + 5 at most, that

o~x~x,,, i=O, 1,..., r,

where w(f(r); .) denotes the modulus of continuity of f(r) on [0, x n].

The lemma shows that G::)(f; 0) = f(i)(O), i = 0, 1,2,..., r.

Proof The lemma is an easy consequence of Gopengauz's theorem [6].

LEMMA 2 (J06 [10, inequality (11)]).

x >0, a> -1.

LEMMA 3. Let a > -1. Then the following asymptotic relation holds for
the zeros Xk = xt) of L~~)(x):

k = 1, 2, ... , n; n = 1, 2, ....

Proof Lemma 3 follows from Theorem 6.31.3 of Szego [14], e.g.,

LEMMA 4. Let a> -1 and f3 > (1.12 +!t. Then for the zeros of L~~)(x) the
estimate

n

L x2-~-1(xn-xd/lx~+11Ik(X)I=0(I)nf3+1/4x('+1)/2ex/2

k~1

holds for x ~ 0.
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Proot: By Lemma 3 our sum is equal to

11 (X: .)/1

Sn=x;:Ix~ a I 1-"-!- xH'llk(x)1
k= I XII

Using Cauchy's inequality and Lemma 2 we obtain

(3.1 )

Let -1 < 2{3 - (ex + 1) ~ O. Then denoting the sum under square root by
Tn, we have by Lemma 3

11

Tn = L X~/i
k~1

la + I) e
11 (k2)2Ii la+11

"'=0(1) L - e
k ~ I n

I> + I I

e ,,2/11 dx = O( I) n 1/2, (3.2 )

where c is a positive constant.
In the case 2{J-(ex+l»O the function y(x)=(x2/n)2 Ii IHll e (Tell

(X> 0) attains its maximum at Xo= In(2f3 - (ex + 1 ))/c, and y decreases
monotonically, if x>xo' Let N= [xo] + 1, N= 0(1)n ' /

2 evidently. We get
by repeated applications of Lemma 3,

N " (e)2Ii- 1>+ I)

T n = L X~/i 1>+ll e "+0(1) .. L - e ek'/n

k~1 k=N+1 n

= 0(1) Nx;.,ii In II + 0(1)rC:2Y/i
=0(I)n l

/
2

•

The lemma follows from (3.1 )-(3.3).

la + I)

e cx
2
/n dx

(3.3 )

LEMMA 5 (Bernstein [3]). Let M=maxO~'<A [P,,(x)l, where P,.(x) is
a polynomial of degree n, then

k= 1, 2, ... , n;O~x~A.
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Proofs of Theorems 1,2, and 3. Only the proof of Theorem 3 (r> IX)

will be detailed, since the proofs of Theorems 2 and 1 can be treated as
analog cases where r = IX > 0 and r = IX = 0, respectively.

Let GnHcn be the polynomial defined in Lemma 1. Then we may write
by Lemma 1,

If(x) - Qn.~(f; x)1 ~ If(x) - Gn+~(f; x)\ + \GnH(f; x) - Qn,~(f; x)1

=O(I)w (pr); JX(:n- X))(JX(X;-X))'

+ IQn.~(Gn+J -f;x)1

where w(f(r); .) denotes the modulus of continuity of fIr) in [0, CIJ).
Using Lemma 3 and Lemma 1 again we get

If(x) - Qn,~(f; x)1

= 0(1) x(r+ y)/2n (r+y)/2

Applying Lemma 4 (fJ = (r + i' )/2) we obtain our theorem.

Proof of Theorem 4. Let Gn + ~(f) be the polynomial defined in
Lemma 1. Then we have by that lemma,

If(i)(x) - Q~.~(j; x)1

~ If(i)(x) - G~i~ ~(f; x)/ + IG~i~ ~(f; x) - m~~(f)1

= 0(1) W (f(r); JX(X~,-X))( )X(:,-X))'-'+ IQ~i,~(GnHf- f; x)1

where w(f(r); .) denotes the modulus of continuity of fIr) in [0, CIJ),
Applying Lemma 3, Lemma 5 for Qn,~(f) if A = 2x, and Lemma 1 again,

we get

IP'\x) - Q~~~(f; x)\

=0(1)X(y+r-il/2 n -(y+r-i)/2



24 KATHERINE BALAZS

=O(I)x')" 112n Ii"

(
J.x;(X" -- Xk ))r ( r ) > + 1

X ----- -- I/k(t)I.
n ,X,

Using Lemma 4 (fi = (y + r)/2) we can estimate the maximum of the last
sum by

which proves the theorem.
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